首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2440篇
  免费   53篇
  国内免费   11篇
化学   1808篇
晶体学   9篇
力学   61篇
数学   329篇
物理学   297篇
  2021年   18篇
  2020年   13篇
  2019年   25篇
  2018年   24篇
  2016年   34篇
  2015年   36篇
  2014年   39篇
  2013年   141篇
  2012年   116篇
  2011年   108篇
  2010年   87篇
  2009年   90篇
  2008年   104篇
  2007年   111篇
  2006年   118篇
  2005年   124篇
  2004年   105篇
  2003年   100篇
  2002年   95篇
  2001年   41篇
  2000年   42篇
  1999年   27篇
  1998年   23篇
  1997年   29篇
  1996年   31篇
  1995年   24篇
  1994年   31篇
  1993年   28篇
  1992年   20篇
  1991年   30篇
  1990年   25篇
  1989年   16篇
  1988年   15篇
  1987年   19篇
  1986年   12篇
  1985年   34篇
  1984年   41篇
  1983年   26篇
  1982年   39篇
  1981年   34篇
  1980年   46篇
  1979年   42篇
  1978年   52篇
  1977年   38篇
  1976年   32篇
  1975年   36篇
  1974年   36篇
  1973年   37篇
  1972年   15篇
  1966年   13篇
排序方式: 共有2504条查询结果,搜索用时 62 毫秒
71.
This paper is a review of the authors' publications concerning the development of biosensors based on enzyme field-effect transistors (ENFETs) for direct substrates or inhibitors analysis. Such biosensors were designed by using immobilised enzymes and ion-selective field-effect transistors (ISFETs). Highly specific, sensitive, simple, fast and cheap determination of different substances renders them as promising tools in medicine, biotechnology, environmental control, agriculture and the food industry.The biosensors based on ENFETs and direct enzyme analysis for determination of concentrations of different substrates (glucose, urea, penicillin, formaldehyde, creatinine, etc.) have been developed and their laboratory prototypes were fabricated. Improvement of the analytical characteristics of such biosensors may be achieved by using a differential mode of measurement, working solutions with different buffer concentrations and specific agents, negatively or positively charged additional membranes, or genetically modified enzymes. These approaches allow one to decrease the effect of the buffer capacity influence on the sensor response in an aim to increase the sensitivity of the biosensors and to extend their dynamic ranges.Biosensors for the determination of concentrations of different toxic substances (organophosphorous pesticides, heavy metal ions, hypochlorite, glycoalkaloids, etc.) were designed on the basis of reversible and/or irreversible enzyme inhibition effect(s). The conception of an enzymatic multibiosensor for the determination of different toxic substances based on the enzyme inhibition effect is also described.We will discuss the respective advantages and disadvantages of biosensors based on the ENFETs developed and also demonstrate their practical application.  相似文献   
72.
The CNDO/2 and INDO approximations (with their original parametrization) are utilized for the calculation of transition energies. The effect of including all ( and ) singly excited configurations is assessed in C2H4, H2CO, HCOOH and HCONH2, and the results are compared to experimental transitions and to the available non-empirical calculations. The effect of extensive mixing is then considered in larger molecules.
Zusammenfassung Die Näherungen CNCO/2 und INDO (mit ihrer ursprünglichen Parametrisierung) werden für die Berechnung von Übergangsenergien benutzt. Der Effekt des Einschlusses aller ( und ) einfach angeregter Konfigurationen wird untersucht für C2H4, H2CO, HCOOH und HCONH2 und die Ergebnisse werden mit experimentellen Übergängen und den verfügbaren nicht-empirischen Rechnungen verglichen. Die Überlegungen werden dann auf größere Moleküle ausgedehnt.

Résumé Les procédés CNDO/2 et INDO (avec leur paramétrisation originale) sont utilisés pour calculer des énergies de transition. L'effet du mélange de toutes les configurations monoexcitées ( et ) est étudié pour C2H4, H2CO, HCOOH et HCONH2, les résultats sont comparés aux transitions expérimentales et aux calculs non-empiriques disponibles. L'étude est étendue à de plus grandes molécules.
  相似文献   
73.
Gibbs functions for transfer from water to methanol and to a full range of water + methanol mixtures were obtained for Cu2+, Cd2+, Pb2+, Hg2+, Zn2+, Mg2+, Ca2+, Sr2+ and Ba2+ using potentiometric or polarographic measurements in these solvents. In addition, data were obtained from the solubility products of the alkaline-earth iodates. From values obtained by the different methods and literature data, a table of selected values is given.  相似文献   
74.
Optimal performance laminar chromatography and automated multiple development chromatography are relatively recent techniques of planar chromatography that can be applied with success in plant material analysis. Therefore, these methods are used to study plant extracts and constituents belonging to different chemical classes of secondary metabolism: heterocyclic oxygen compounds (coumarins, flavonoids, and anthocyanins), alkaloids and quaternary ammonium salts, cannabinoids, essential oils, ginsenosides, and cardiac heterosides. Generally, the results obtained with these methods are good, and in most cases they compare with those of thin-layer chromatography.  相似文献   
75.
Aliphatic saturated amides treated with Me3SiCl/Li/THF were found to react in two ways. Either alkoxysilanes, mono- or di-silylated at the functional carbon, or C-silylated amines were obtained dependent of the original amide structure and the experimental conditions. (Me3Si)2CHN(SiMe3)2 exhibited Physicochemical properties that are particular for hindered rotation about the CN bond. A general mechanism is proposed to explain these results.  相似文献   
76.
Equilibrium constants for the fluorinated species HF, F-, HF-2 and H2F2 in formic acid and in a 1M potassium formate solution in formic acid have been studied by 19F NMR. The chemical shifts of these species have been determined from measurements of the shifts for various initial mixtures of differing concentrations of dissolved HF, F- and HF-2. From these values, relative concentrations of HF, F-, and HF-2 and H2F2 in each solution have been calculated through a numerical method. The following constants were obtained: K1 = [H+][F-]/[HF] = 1.1 x 10-5M; KD = [HF][F-]/[HF-2] = 0.5 M; K′1 = [H+][HF-2]/[H2F2]= 1.1 x 10-5 M; K′D = [HF]2/[H2F2]=0.5 M.  相似文献   
77.
The title dipeptide, 1‐(tert‐butoxy­carbonyl‐d ‐alanyl)‐N‐iso­propyl‐l ‐pipecol­amide or Boc‐d ‐Ala‐l ‐Pip‐NHiPr (H‐Pip‐OH is pipecolic acid or piperidine‐2‐carboxylic acid), C17H31N3­O4, with a d –l heterochiral sequence, adopts a type II′β‐­turn conformation, with all‐trans amide functions, where the C‐terminal amide NH group interacts with the Boc carbonyl O atom to form a classical i+3 i intramolecular hydrogen bond. The Cα substituent takes an axial position [Hα (Pip) equatorial] and the trans pipecolamide function is nearly planar.  相似文献   
78.
In this paper a brief overview of the research in microwave spectroscopy of molecular ions done at the University of Wisconsin will be given, with major emphasis on work done in the past year. Five molecular ions (CO+, HCO+, HNN+, HCS+, and HOC+) have been studied in this work, and all of them have also been detected by radioastronomy. Molecular structures (rs for HCO+, HOC+, and HNN+ and re for HCO+) have been determined and important dynamical information has been obtained from pressure broadened linewidths (Δν/P), Doppler shifts, and relative intensity data. In particular the Δν/P values have been shown to correspond to the Langevin cross-section, indicating the monopole-induced dipole interaction is the pertinent intermolecular force.  相似文献   
79.
DNA triplex and quadruplex structures have been successfully detected by electrospray ionization mass spectrometry (ESI-MS). Circular dichroism and UV-melting experiments show that these structures are stable in 150 mM ammonium acetate at pH 7 for the quadruplexes and pH 5.5 for the triplexes. The studied quadruplexes were the tetramer [d(TGGGGT)](4), the dimer [d(GGGGTTTTGGGG)](2), and the intramolecular folded strand dGGG(TTAGGG)(3), which is an analog of the human telomeric sequence. The absence of sodium contamination allowed demonstration of the specific inclusion of n - 1 ammonium cations in the quadruplex structures, where n is the number of consecutive G-tetrads. We also detected the complexes between the quadruplexes and the quadruplex-specific drug mesoporphyrin IX. MS/MS spectra of [d(TGGGGT)](4) and the complex with the drug are also reported. As the drug does not displace the ammonium cations, one can conclude that the drug binds at the exterior of the tetrads, and not between them. For the triplex structure the ESI-MS spectra show the detection of the specific triplex, at m/z values typically higher than those typically observed for duplex species. Upon MS/MS the antigene strand, which is bound into the major groove of the duplex, separates from the triplex. This is the same dissociation pathway as in solution. To our knowledge this is the first report of a triplex DNA structure by electrospray mass spectrometry.  相似文献   
80.
The reaction of Mn(O(2)CPh)(2).2H(2)O and PhCO(2)H in EtOH/MeCN with NBu(n)(4)MnO(4) gives (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(9)(H(2)O)] (4) in high yield (85-95%). Complex 4 crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -129 degrees C: a = 17.394(3) ?, b = 19.040(3) ?, c = 25.660(5) ?, beta = 103.51(1) degrees, V = 8262.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 9.11% (9.26%) using 4590 unique reflections with F > 2.33sigma(F). The anion of 4 consists of a [Mn(4)(&mgr;(3)-O)(2)](8+) core with a "butterfly" disposition of four Mn(III) atoms. In addition to seven bridging PhCO(2)(-) groups, there is a chelating PhCO(2)(-) group at one "wingtip" Mn atom and terminal PhCO(2)(-) and H(2)O groups at the other. Complex 4 is an excellent steppingstone to other [Mn(4)O(2)]-containing species. Treatment of 4 with 2,2-diethylmalonate (2 equiv) leads to isolation of (NBu(n)(4))(2)[Mn(8)O(4)(O(2)CPh)(12)(Et(2)mal)(2)(H(2)O)(2)] (5) in 45% yield after recrystallization. Complex 5 is mixed-valent (2Mn(II),6Mn(III)) and contains an [Mn(8)O(4)](14+) core that consists of two [Mn(4)O(2)](7+) (Mn(II),3Mn(III)) butterfly units linked together by one of the &mgr;(3)-O(2)(-) ions in each unit bridging to one of the body Mn atoms in the other unit, and thus converting to &mgr;(4)-O(2)(-) modes. The Mn(II) ions are in wingtip positions. The Et(2)mal(2)(-) groups each bridge two wingtip Mn atoms from different butterfly units, providing additional linkage between the halves of the molecule. Complex 5.4CH(2)Cl(2) crystallizes in monoclinic space group P2(1)/c with the following unit cell parameters at -165 degrees C: a = 16.247(5) ?, b = 27.190(8) ?, c = 17.715(5) ?, beta = 113.95(1) degrees, V = 7152.0 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 8.36 (8.61%) using 4133 unique reflections with F > 3sigma(F). The reaction of 4 with 2 equiv of bpy or picolinic acid (picH) yields the known complex Mn(4)O(2)(O(2)CPh)(7)(bpy)(2) (2), containing Mn(II),3Mn(III), or (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(pic)(2)] (6), containing 4Mn(III). Treatment of 4 with dibenzoylmethane (dbmH, 2 equiv) gives the mono-chelate product (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(8)(dbm)] (7); ligation of a second chelate group requires treatment of 7 with Na(dbm), which yields (NBu(n)(4))[Mn(4)O(2)(O(2)CPh)(7)(dbm)(2)] (8). Complexes 7 and 8 both contain a [Mn(4)O(2)](8+) (4Mn(III)) butterfly unit. Complex 7 contains chelating dbm(-) and chelating PhCO(2)(-) at the two wingtip positions, whereas 8 contains two chelating dbm(-) groups at these positions, as in 2 and 6. Complex 7.2CH(2)Cl(2) crystallizes in monoclinic space group P2(1) with the following unit cell parameters at -170 degrees C: a = 18.169(3) ?, b = 19.678(4) ?, c = 25.036(4) ?, beta = 101.49(1) degrees, V = 8771.7 ?(3), Z = 4; the structure was refined on F to R (R(w)) = 7.36% (7.59%) using 10 782 unique reflections with F > 3sigma(F). Variable-temperature magnetic susceptibility studies have been carried out on powdered samples of complexes 2 and 5 in a 10.0 kG field in the 5.0-320.0 K range. The effective magnetic moment (&mgr;(eff)) for 2 gradually decreases from 8.61 &mgr;(B) per molecule at 320.0 K to 5.71 &mgr;(B) at 13.0 K and then increases slightly to 5.91 &mgr;(B) at 5.0 K. For 5, &mgr;(eff) gradually decreases from 10.54 &mgr;(B) per molecule at 320.0 K to 8.42 &mgr;(B) at 40.0 K, followed by a more rapid decrease to 6.02 &mgr;(B) at 5.0 K. On the basis of the crystal structure of 5 showing the single Mn(II) ion in each [Mn(4)O(2)](7+) subcore to be at a wingtip position, the Mn(II) ion in 2 was concluded to be at a wingtip position also. Employing the reasonable approximation that J(w)(b)(Mn(II)/Mn(III)) = J(w)(b)(Mn(III)/M(III)), where J(w)(b) is the magnetic exchange interaction between wingtip (w) and body (b) Mn ions of the indicated oxidation state, a theoretical chi(M) vs T expression was derived and used to fit the experimental molar magnetic susceptibility (chi(M)) vs T data. The obtained fitting parameters were J(w)(b) = -3.9 cm(-)(1), J(b)(b) = -9.2 cm(-)(1), and g = 1.80. These values suggest a S(T) = (5)/(2) ground state spin for 2, which was confirmed by magnetization vs field measurements in the 0.5-50.0 kG magnetic field range and 2.0-30.0 K temperature range. For complex 5, since the two bonds connecting the two [Mn(4)O(2)](7+) units are Jahn-Teller elongated and weak, it was assumed that complex 5 could be treated, to a first approximation, as consisting of weakly-interacting halves; the magnetic susceptibility data for 5 at temperatures >/=40 K were therefore fit to the same theoretical expression as used for 2, and the fitting parameters were J(w)(b) = -14.0 cm(-)(1) and J(b)(b) = -30.5 cm(-)(1), with g = 1.93 (held constant). These values suggest an S(T) = (5)/(2) ground state spin for each [Mn(4)O(2)](7+) unit of 5, as found for 2. The interactions between the subunits are difficult to incorporate into this model, and the true ground state spin value of the entire Mn(8) anion was therefore determined by magnetization vs field studies, which showed the ground state of 5 to be S(T) = 3. The results of the studies on 2 and 5 are considered with respect to spin frustration effects within the [Mn(4)O(2)](7+) units. Complexes 2 and 5 are EPR-active and -silent, respectively, consistent with their S(T) = (5)/(2) and S(T) = 3 ground states, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号